MEASUREMENT OF HEAGHT USTNG WKWL MOUNTED STETUREMETER?

KHESURENHNT OF HENGHT USING WRWL MOUNTKED STETUREMETER?

Height is one of the most widely used indicators for assessment of nutritional status and provides an index of linear skeletal growth. Until a few decades ago many of the surveys were carried out in places without level ground or vertical wall.
Under these circumstances height was measured using either a stadiometer or anthropometry rod.
Stadiometer is a bulky instrument, occupies space and is heavy.
Anthropometry rod is relatively compact but intensive training is required to keep the rod perpendicular and accurately measure the height.
Currently in all urban areas and most rural areas, most residences have even flat floor and vertical walls.
Under these conditions the small readily portable wall mounted staturemeter is used for measurement of height.

STATUREMENER FOR HEGHM MEASURENHNT

Wall mounted staturemeters are used for measuring height.
Instrument specifications
Reverse wound stainless steel tape in a plastic case with horizontal and vertical arms
Vertical arm fixes the staturemeter to the wall Horizontal arm rests on the head of the person being measured
Tape length: $\mathbf{2}$ meters.
Instrument accuracy: 0.1 cm .
Accuracy of the tape assessed by comparing with the standard steel tapes certified by Deptt of Weights and Measures.
Accuracy of staturemeter in measuring height of individuals is tested against a standard stature meter.

All the three stature meter tapes were accurate as compared to steel tape certified by the Deptt of weights and measures.

CHECKING ACCURACY OF THE STATURE METER

CHECKING ACCUI TEST STATURE METER

Height measured
with the three stature
meters were
comparable to the
height measured by
standard stature
meter
These three stature
meters are accurate
upto 0.1 cm

OTHER PROBLENGS WITHH STATURENETERSS

Some staturemeter tapes do not unwind fully or smoothly.
Such staturemeters may not function under field conditions and so should be rejected and replaced.

The vertical limb may get fractured if the hammer blow falls on it when it is nailed to the wall. This may lead to slanted fixation and lead to errors in measurement of height. Efforts should be made to protect the vertical limb from hits while fixing the staturemeter.

If the vertical limb has been fractured such staturemeters should be rejected and replaced.

The error due to keeping horizontal limb of the stature meter on the floor while fixing the stature meter at 200 cm may vary between 0.3 to 1.0 cm depending upon the thickness of the skirting

FIXING STCHURE METHER TO THE WRNL AT 200 CM

Ensuring that the tape is winding down vertically
 Place a $\mathbf{5 0 0}$ weight on the horizontal arm of stature meter and keep your palm below it

Gently allow the horizontal limb with the weight to fall.

Gravity assisted fall will ensure that the tape is winding down vertically

Draw a pencil line on either side of the tape

Keeping the tape between the two lines will ensure that tape is being drawn down vertically and help in accurate measurement of height.

Drawing down the tape obliquely is one of the common errors made especially when young children are measured.

If the obliquity is large the error in measurement may go up to 0.5 cm in children; however large obliquity may be more easy to detect and correct

It is difficult to assess when the obliquity is small.

Two lines are drawn on either side of the tape. The person measuring height can keep the tape between these two line and ensure accurate measurement of height.

POSIMONING THE PERSON FOR HEGGT MEASUREMENT

The head is held in

Plane - tragus is in line with the lower orbital margin.

POSITIONING THE PERSON FOR HEIGHT MEASUREMENT

MEASURENHNT OF HENGHT

The person being measured should be barefoot and hair should be flat Feet to be together with heels, buttocks, shoulder touching the wall Tragus of the ear and the lower orbital margin should be in the same horizontal plane. This is called Frankfurt Plane.
The horizontal limb of the stature meter should be firmly placed on the top of the head but should not be pressed
The eyes of the investigator should be in level with the window showing the reading. The height should measured to the nearest 0.1 cm

Standing on a stool and stooping to read the height of taller persons

If the subject is taller than the investigator then a stool should be used to ensure that the eye of person who takes the measurement is on the same level as the window providing the reading in the stature meter. If the subject is shorter, the investigator should stoop to take the measurement.

POSTMONING THE PERSON FOR HETGHT MEASUREMENT

Height is being measured in a child at home.
Child is standing straight.
Heel, knee, buttocks, back, shoulders and back of the head are touching the wall.

Head is held in Frankfurt plane.
The horizontal limb of the stature meter is resting on the top of the child's head.

POSIMONLNG THE PERSON FOR HEGGT MENSUREMENT

horizontal limb of the stature meter resting on the head. His height is 94 cms.

POSITIONING THE PERSON FOR HEIGHT ME ASUREMENT

This woman is standing straight with heels, knees (not in the picture), buttocks, shoulders and back of the head touching the wall.
She is looking straight ahead with head held in Frankfurt plane.
The horizontal limb of the stature meter is resting on the top of her head. Her height is 146.5 cm .

QUAWHYY ASSURANGE IN ANYHROPOMETRIC MEASUREMENTS

Variability in the measurement can be of two types - intra-individual variability and inter-individual variability.

Intra-individual variability refers to the variation in the measurement, when the same measurement is taken by an investigator repeatedly in the same person at the given time.

Inter-individual variability refers to the variation in the measurement, when the same measurement is taken by different investigators in the same person at a given time.
Variability in measurement can be reduced by standardizing the tools and techniques used and by appropriate training of the investigators.
After getting trained in accurately measuring height, weight, midupper arm circumference (MUAC), waist circumference (WC), hip circumference (HC), all trainees have to participate in exercise to assess the errors in measurement as compared to the faculty.

Quality assurance measures in training
Height measurement had been carried out by 7 trainees for 6 rounds and the difference between height of these persons as measured by the faculty and the trainees were taken. Mean and SD of the difference is computed

With increasing experience the error margin comes down in all persons

There are some persons who are accurate right from the beginning.

There are some who have wide margin of error after several rounds and do not perform well.

