Energy requirements of Indians

Anura V Kurpad, MD, PhD, FRCP, FAMS Professor, Department of Physiology, St John's Medical College, Bengaluru

Key points to discuss

• The recent ICMR-NIN 2020 energy norms for adults and children

- Implications of the Energy Norm
 - Poverty
 - Hunger
 - Supplementary nutrition for children
 - Energy requirement of catch-up growth in SAM

The energy requirement: method

- <u>Only</u> based on expenditure measurements <u>not</u> intake
- Factorial method most common, as you only need to measure weight and age; and get a physical activity questionnaire
 - BMR x PAL
- Measure Total Energy Expenditure
 - DLW

BMR: for populations (or individuals)

- BMR is predicted from age- and sex-specific equations
- Most used –WHO equation or Schofield
 - Clinical equations Harris-Benedict, Owen, Mifflin
- The equation depends on the population it was derived from
 - Muscular, active young men (army recruits) would probably have a higher BMR

The Indian BMR

- Careful measurements by Shetty & Soares (1980's-90's) documented that Indian subjects' BMR was lower than what was predicted by the WHO/FAO/UNU equation
- This has been repeated in many countries in Asia- but methods vary (RMR vs BMR) this is a critical problem.
- A lower BMR will lower the total Energy requirement

And if you do not have the measured weight?

- Take an aspirational height: 95th percentile of population values
- Find the weight for this height that would correspond to a BMI of 21 kg/M^2
- 65 Kg for men and 55 for women
- Predict BMR

Is PAL lower in Indians?

Large-scale physical activity data reveal worldwide activity inequality

Tim Althoff¹, Rok Sosič¹, Jennifer L. Hicks², Abby C. King^{3,4}, Scott L. Delp^{2,5} & Jure Leskovec^{1,6}

App-based step counts from smartphones and self reported BMI (n=717,527)

- Indian ranked low in physical activity with large gender gap;
- A careful attention is required in defining energy requirement for sedentary population

Other reasons for a lower PAL in Indians?

- PAR (energy expended in each activity) could also be lower
- Take a daily history of activities
- PAL = Daily sum of (activity PAR x its duration)/total minutes
- The PAR is lower at lower BMI would lead to a lower PAL

Physical activity ratio of selected activities in Indian male and female subjects and its relationship with body mass index

Rebecca Kuriyan¹*, Parvathi P. Easwaran² and Anura V. Kurpad¹

A recent study in Bengaluru

- TEE of millennials (in their 20's to 30's), measured by DLW.
- Measure BMR to get PAL (TEE/BMR)
- Also validate BMR equation
- TEE was 13% lower than predicted using FAO/WHO/UNU 2004
- Measured BMR: 7% lower than predicted
- Measured PAL = 1.35
- PAL by questionnaire: 1.53

Present PAL recommendations for the requirement

Activity	Sedentary	Moderate	Heavy
FAO/WHO/UNU 2005			
Males and females	1.40-1.69	1.70-1.99	2.0-2.40
ICMR 2010			
Males and females	1.53	1.80	2.30
ICMR 2020			
Males and females	1.40	1.80	2.30

A philosophical aside: do you reduce the PAL value or keep it high, hoping that population will become more active?

The energy norm

Age group	Category	ICMR 2020	ICMR 2010	Difference
			kcal/d	
Adult Men	Sedentary work	2110	2320	-210
(65 Kg)	Moderate work	2710	2730	-20
	Heavy work	3470	3490	-20
Adult Women (55 Kg)	Sedentary work	1660	1900	-240
	Moderate work	2130	2230	-100
	Heavy work	2720	2850	-130

NUTRIENT REQUIREMENTS FOR INDIANS

- Not much difference for moderate and heavy work
- The difference is due to lower BMR
- Larger difference in women because the normative weight in men increased

Implications - poverty

- Rangarajan Committee
- Energy is part of poverty estimation: Nutrient intake compared to nutritional norms for energy, protein and fat per capita per day
- Earlier Norm for energy
 - Rural: 2155 kcal/capita/d
 - Urban: 2090 kcal/capita/d
- <u>With new energy requirements</u>, energy norms come down marginally
 - Rural: 2063 kcal/capita/d
 - Urban: 1959 kcal/capita/d

Reduces poverty line by Rs 1; reduces proportion BPL by 2%

Implications: Global Hunger Index

0

2000

https://www.globalhungerindex.org/results.html

2005

2010

2019

A contentious index

Uncertain metrics

How is the GHI calculated?

4 Indicators are assessed

- 1. UNDERNOURISHMENT: the share of the population that is undernourished (that is, whose caloric intake is insufficient) (Below the minimum dietary energy requirement for survival)
- 2. CHILD WASTING: the share of children under the age of five who are wasted (that is, who have low weight for their height, reflecting acute undernutrition);
- 3. CHILD STUNTING: the share of children under the age of five who are stunted (that is, who have low height for their age, reflecting chronic undernutrition); and
- 4. CHILD MORTALITY: the mortality rate of children under the age of five (in part, a reflection of the fatal mix of inadequate nutrition and unhealthy environments).^[2]

The minimum dietary energy requirement (MDER) (FAO 2016)

- The intake that is adequate to maintain the <u>minimum acceptable BMI</u> of adult men and women engaged in low physical activity
- Where did the minimum acceptable BMI come from?
- Based on lowest (5th percentile) weight from WHO 1995 from NHANES
 - Use weight to predict BMR
 - Use PAL of 1.55 for males and 1.56 for females
- MDER: 1802 Kcal/capita/day

What proportion of energy intakes fall below the MDER?

- El based on NSSO (2011-12)¹
- Average for men and women
- Mean intake = 2060 kcal/capita/d
- **Proportion <1800 = 14.3%**
 - This is the value used in the GHI

per capita energy intake(Kcal)

Re-thinking the MDER in India

• ICMR-NIN 2020

 Sedentary Men = 	2110 kcal/d
 Sedentary Women = 	1660 kcal/d
 Average = 	1885 kcal/d
 FAO, MDER = 	1800 kcal/d

Body weight matters! NHANES Vs NNMB

- Weights are different:
- NHANES 1 & NNMB urban survey – For men
- 5th percentile for American men = 20th percentile for Indian men
- Also: lower BMR and PAL

Possible MDER for India

Data	Body weight (kg)	BMR	PAL	MDER (kcal/d)	MDER adjusted for demographics (kcal/capita/d)*
FAO 2016 (5 th percentile BMI) ¹	45.5	1260	1.55	1950	1802
NNMB 5 th percentile BW & 10% lower BMR ³	40.7#	1085	<mark>1.55</mark>	1691	1563

*Requirement is weighed according to population structure - 23% children population and 77% adult population – Census, 2011 [#] Calculated with BMI of 18.5 kg/m² and 5th percentile height (NNMB, 2012 & 2016)

¹<u>http://www.fao.org/faostat/en/#data/FS/metadata</u>; ²Must et al, 2005 AJCN; ³NNMB – rural and urban surveys, 2012, 2016

What proportion of undernourishment when using different MDER cutoffs (1800 vs 1500 kcal/d)?

ER for Children and Adolescents

Age	Cotogory	De der mei ek te	Req	uirement
Group	Category	Body weights	(kcal/d) ^a	(kcal/kg/day)
Inforto	0-6 m	5.8	550	95
infants	6-12m	8.5	670	80
	1-3y	11.7	1010	86
Children ^d	4-6y	18.3	1360	74
	7-9 y	25.3	1700	67
Boys	10-12y	34.9	2220	64
Girls	10-12y	36.4	2060	57
Boys	13-15y	50.5	2860	57
Girls	13-15y	49.6	2400	49
Boys	16-18y	64.4	3320	52
Girls	16-18y	55.7	2500	45

30

Energy norms for Supplementary Nutrition

- Present norm: **500 kCal/day** for 0.5 to 6y old child; **800 kCal/day** for malnourished
- But what is the real energy gap, and what foods are needed?
- Using NNMB rural intake data, cleaned, and <u>only for those children with WAZ ≥-2</u>
 Calculate gap against ICMR NIN 2020 requirement
- The gap is ~250 kCal/day; risk of protein inadequacy is low at 6% (mainly cereal)
- The macronutrient with most deficit: **fat** (10-20g/day)

- We are <u>overfeeding</u> with the wrong foods; too much volume
- Legumes, fruits & vegetables, milk intake is low

Energy norms for Catch-up growth in SAM

- How much energy do you feed a malnourished child (SAM)?
- The aim is to have the child to catch up: from <-3WHZ to > -2 WHZ in a short time (10-20 days) – <u>in a hurry</u>.

Led to the concept of 'therapeutic' feeding A form of hyperalimentation

• Feeding Norm in India is 200 kCal/kg/day*

*: Niti Ayog, NTBN

GUIDELINE

UPDATES ON THE MANAGEMENT OF SEVERE ACUTE MALNUTRITION IN INFANTS AND CHILDREN

What is the WHO guideline?

• The WHO norm is **100-135** kCal/kg/day

• How was this calculated?

Calculating the energetic cost of growth (more lean mass)

FAO/WHO/UNU, 2004 and Spady et al, 1976

Calculating the energetic cost of growth (more fat)

FAO/WHO/UNU, 2004 and Spady et al, 1976

So: the total energy cost of 5 – 10 g/kg weight gain/day

	70:30 (Lean: Fat)		50:50 (Le		
Growth rate	Cost (4.3 kCal/g)	Total required (kCal/kg/day)	Cost (5.5 Kcal/g)	Total required (kCal/kg/day)	
5g/kg/day	= 5 x 4.3	= 80 + 21.5	= 5 x 5.5	= 80 + 27.5	
	= 21.5 kCal	= 101.5 kCal	= 27.5 kCal	= 107.5 kCal	GUIDELINE UPDATES ON THE MANAGEMENT OF SEVERE ACUTE MAI NUTRITION
					IN INFANTS AND CHILDREN
10g/kg/day	= 10 x 4.3	= 80 + 43	= 10 x 5.5	= 80 + 55	World Health Organization 100 – 135 kCal/kg/d
	= 43 kCal	= 123 kCal	= 55 kCal	= 135 kCal	

In perspective

What is the normal growth rate of a child (1-2y old)? <<< 1 g/kg/day

Reduces even more with age

The clinical reality:

- Growth rate of >5 g/kg/day is rare
- Usually about 3 g/kg/day

The downside of 200 kCal @ a density of 5 kCal/g:

- Re-feeding syndrome
- Oily and sweet: sets taste preference
- Adverse composition of growth
- High K content

Sacrifice

• Either 'undernourished' or 'normal' litter

Sacrifice

Birth

0

Weaning

• With 16 weeks of recovery feeding – Normal vs 'High Energy, Fat' (5.5 kCal/g; 58% fat)

Sacrifice

Time (weeks)

• Liver fat increased ~3 fold (~9 vs 27%) in both groups

Why this hurry? Why give so much?

Mortality of children with severe acute malnutrition observed in longitudinal studies

Country	Mortality rate	
Congo, Democratic Republic of the	21%	
Bangladesh	20%	
Senegal	20%	
Uganda	12%	
Yemen	10%	

Note: For studies of less than 12 months, rate was adjusted for duration of follow-up.

A high mortality

A dramatic increase in mortality risk (10-fold)

COMMUNITY-BASED MANAGEMENT OF SEVERE ACUTE MALNUTRITION

FIGURE 1

Odds ratio for mortality by weight-for-height. **Adapted from reference 9**

Note: reference category: children with a weight-for-height > -1 SD.

identification malnutrition and children

and the

of severe

in infants

acute

One peculiarity in Severe Acute Malnutrition (SAM)

- The word 'Acute' implies sudden and recent weight loss
- Yet- when we diagnose SAM in public health- <u>no history</u> is obtained
 - This is OK during an infectious epidemic or disasters
- Sudden (acute and unintended) weight loss is always a concern
- However, is SAM in India different? Is the severe malnutrition <u>chronic</u> or persistent?
- Then, could mortality differ?

Some studies of mortality in India

PLOS MEDICINE PUBLISH ABOUT

RESEARCH ARTICLE

Mortality and recovery following moderate and severe acute malnutrition in children aged 6–18 months in rural Jharkhand and Odisha, eastern India: A cohort study

Audrey Prost , Nirmala Nair, Andrew Copas, Hemanta Pradhan, Naomi Saville, Prasanta Tripathy, Rajkumar Gope, Shibanand Rath, Suchitra Rath, Jolene Skordis, Sanghita Bhattacharyya, Anthony Costello, Harshpal S. Sachdev

Published: October 15, 2019 • https://doi.org/10.1371/journal.pmed.1002934

We found that SAM carried a lower case fatality rate (1.2%) than expected from WHO estimates (10%–20%), echoing results from three other Indian studies, which found case fatality rates ranging from 2.7% to 5.2% among children older than 6 months.

- If mortality is low in India, is there a need for such a fast rate of catch-up?
- <u>Could severe acute 'overnutrition' occur</u>?

Final thoughts

• New norms: mindful of extra energy at all ages: the risk of overweight is real

• Has implications for assessing "hunger", small effect on poverty

- Energy norm for supplemental nutrition and feeding children with SAM:
 - Too much cereal calories at present
 - In SAM: aim for steady restitution with the best possible body composition
 - No need for 200 kCal/kg/day: 100 is enough
 - Distinguish undersized from undernourished