Interventions to improve iron status with food fortification and dietary diversification

K. Madhavan Nair PhD, FNAMS, FNAAS, FTAS
Scientist-F (Retd.)
National Institute of Nutrition (ICMR),
Vice President, Nutrition Society of India
nairthayil@gmail.com

29-11-2017

Kamala Raheja Auditorium, JJ Bajaj Centre for Multi-Professional Education, NAMS House, Ansari Nagar, New Delhi

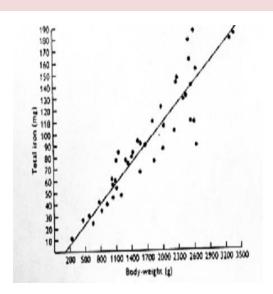
DALYs rate of IDA in the states of India

India: Health of the Nation's States

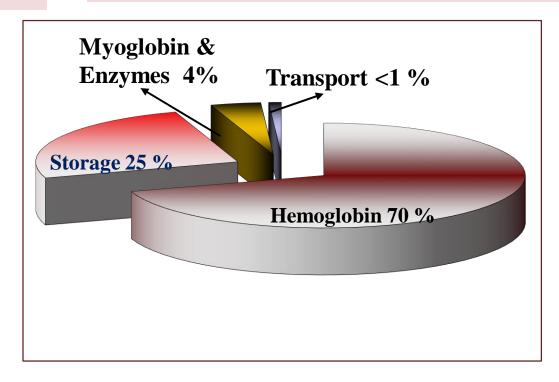
The India State-Level Disease Burden Initiative

INDIAN COUNCIL OF MEDICAL RESEARCH PUBLIC HEALTH FOUNDATION OF INDIA INSTITUTE FOR HEALTH METRICS AND EVALUATION

Significantly lower than national mean Indistinguishable from national mean

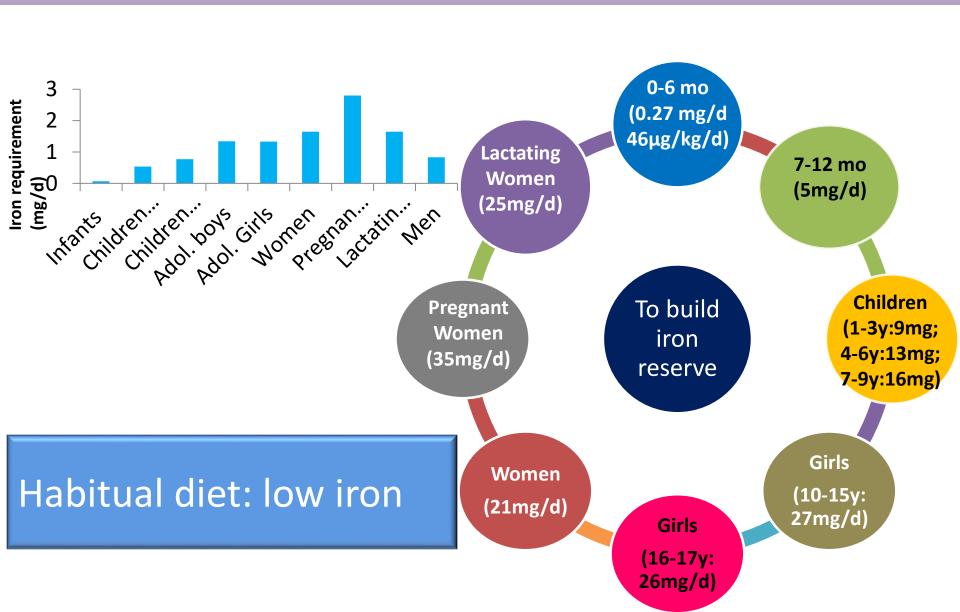

Significantly higher than national mean

India	1235
EAG States	1376
Lowest ETL group	1376
Bihar	1610
Chhattisgarh	1196
Jharkhand	1471
Madhya Pradesh	1335
Odisha	1246
Rajasthan	1397
Uttar Pradesh	1319
Lower-middle ETL group	1008
Uttarakhand	1008
North-East states	1282
Lowest ETL group	1451
Meghalaya	1218
Assam	1472
Lower-middle ETL group	820
Arunachal Pradesh	887
Mizoram	678
Nagaland	537
Tripura	1197
Sikkim	954
Manipur	463
Other states	1104
Lower-middle ETL group	1228
Gujarat	1228
Higher-middle ETL group	1114
Haryana	1293
Delhi	925
Telangana	1055
Andhra Pradesh	1294
Jammu and Kashmir	953
Karnataka	1106
West Bengal	1157
Ma ha rashtra	1077
Union Territories other the	990
Highest ETL group	987
Himachal Pradesh	813
Punjab	1093
Goa	645
Tamil Nadu	1199
Kerala	515

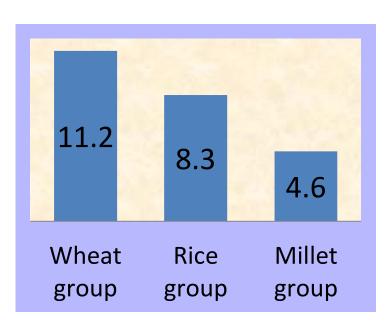

The foundation of adequate iron status is laid before birth, during childhood, and is followed during adolescence

Relationship between total iron and weight of fetus

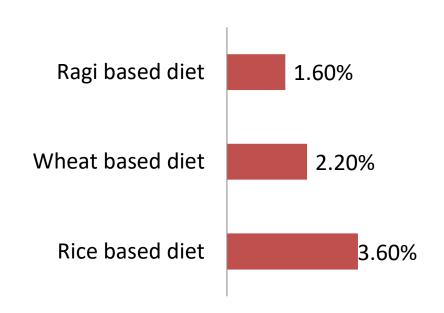
Building up of iron store is very essential for iron balance



Apte and Iyengar, Br. J.Nutr. 1972, 27: 305 - 12


Iron stores absent or insufficient throughout life cycle

Meeting iron requirement is a prerequisite for preventing iron deficiency throughout the life cycle



Host and dietary factors determine iron bioavailability

Iron deficient women

adult males

Food synergy to improve iron bioavailability

CURRENT STRATEGIES TO MEET RDA OF IRON

National Iron +

Fortified staple foods

Bio Fortified staple foods

Dietary diversification

Health Care facility & WASH

Food fortification

Addition of one or more essential nutrients to a food for the purpose of preventing or correcting a demonstrated deficiency in the population or specific population groups.

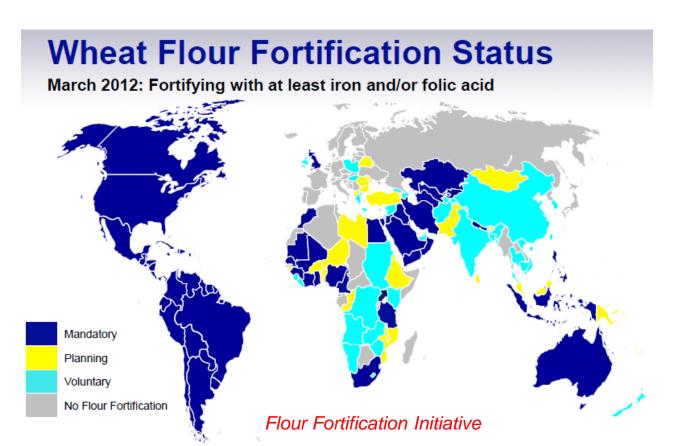
Vehicles for Iron fortification

Wheat flour/Rice/Maize/salt

Regional strategies

Fish Sauce/Curry Powder

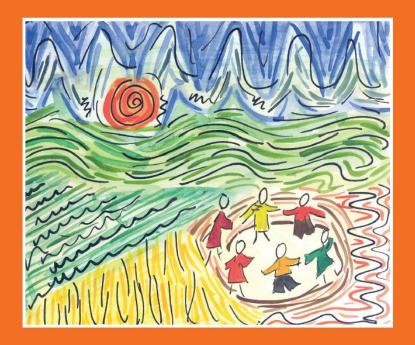
Food fortification has a successful track record in many countries


Long history of safe use in many countries for successful control of deficiencies of vitamins A, D, several B vitamins, iodine and iron

Ranked as the best global welfare investment

Food Fortification Works

For more than 80 years, wheat flour has been fortified with iron and other nutrients in developed countries


Mandatory: In October 2017, 87 countries have legislation to fortify wheat flour, maize flour, and/or rice.

Suggested iron fortificants for specific food vehicles

Food vehicle	Fortificant		
Low extraction (white) wheat	Dry ferrous sulfate		
flour or degermed corn	Ferrous fumarate		
flour	Electrolytic iron (x2 amount)		
	Encapsulated ferrous sulfate		
	Encapsulated ferrous fumarate		
High extraction wheat flour,	Sodium iron EDTA		
corn flour, corn masa flour	Ferrous fumarate (x2 amount)		
	Encapsulated ferrous sulfate (x2 amou	ınt)	
	Encapsulated ferrous fumarate (x2 am	ount)	
Pasta	Dry ferrous sulfate		
Rice ^a	Ferric pyrophosphate (x2 amount)		
Dry milk	Ferrous sulfate plus ascorbic acid		
Fluid milk	Ferric ammonium citrate		
	Ferrous bisglycinate		
	Micronized ferric pyrophosphate		
Cocoa products	Ferrous fumarate plus ascorbic acid		
	Ferric pyrophosphate (x2 amount) plus	s ascorbic acid	
Salta	Encapsulated ferrous sulfate		
	Ferric pyrophosphate (x2 amount)		
Sugar ^a	Sodium iron EDTA FIGURE	F 1.1	
Soy sauce, fish sauce	Sodium iron EDTA		sauce on iron status of non-pregnant
		ic female Vietnamese fact	
Juice, soft drinks	Ferrous bisglycinate, ferrous lac		·
	Micronized terric pyrophosphate 80	on deficiency	Iron deficiency anaemia
Bouillon cubes ^a	Micronized ferric pyrophosphate 70		70
Cereal-based	Ferrous sulfate		€ 60
complementary foods ^b	Ferrous sulfate Encapsulated ferrous sulfate Ferrous fumarate Electrolytic iron (×2 amount) 60 50 40 20		(% 60 50 40 30
	Ferrous fumarate	*	40 <u>a</u>
	Electrolytic iron (×2 amount)		M 30 ***
	All with ascorbic acid (≥2:1 mo		10
Breakfast cereals	Electrolytic iron (×2 amount)		0
		t_{0} t_{3} t_{6}	t_0 t_3 t_6
		Time	Time

Prevalence of iron deficiency and iron deficiency anaemia at baseline, and after 3 and 6 months of intervention in the iron intervention group \blacksquare (10 mg iron/day in NaFeEDTA-fortified fish sauce (n = 64)) and the control group \square (n = 72) in anaemic Vietnamese women.

Guidelines on food fortification with micronutrients

Edited by Lindsay Allen, Bruno de Benoist, Omar Dary and Richard Hurrell

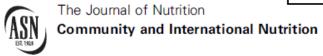
- Focus on wheat flour fortification
- Key micronutrients —iron, folic acid, zinc , vitamin B12 and vitamin A, D
- Fortification levels and technical aspects
- General recommendations that needs to be adopted to local context- specific micronutrient intake and consumption level of food vehicle among different groups.

Evidence of the effectiveness of flour fortification for reducing the prevalence of anemia is limited

Countries included:

Azerbaijan, Brazil, China, Fiji, India, Iran, Kazakhstan, Mongolia, Nepal, Sri Lanka, Tajikistan, Uzbekistan, and Venezuela

Most reported fortification with iron:


Wheat flour (n=10), wheat, maize flour (n=2), wheat, maize, millet flour (n=1)

Population represented:

Children ≤ 15 and women of reproduction age

Biological marker	Children \leq 15 y (n $=$ 14 subgroups)		Women of reproductive age (n = 12 subgroups			
	Yes	No	Not assessed ^a	Yes	No	Not assessed ^a
Increased ferritin ^b	3	3	8	(5)	0	7
Decreased prevalence of low ferritin	1	5	8	3	0	9
Increased hemoglobin	5	7	2	6	5	1
Decreased prevalence of anemia	4	9	1	4	8	0
Decreased prevalence of IDA	0	0	14	0	2	10

Programs followed WHO iron recommendations for flour fortification or not ????

Iron, Zinc, Folate, and Vitamin B-12 Status Increased among Women and Children in Yaoundé and Douala, Cameroon, 1 Year after Introducing Fortified Wheat Flour

Reina Engle-Stone, ¹ Martin Nankap, ² Alex O Ndjebayi, ² Lindsay H Allen, ^{1,3} Setareh Shahab-Ferdows, ^{1,3} Daniela Hampel, ^{1,3} David W Killilea, ⁴ Marie-Madeleine Gimou, ⁵ Lisa A Houghton, ⁶ Avital Friedman, ² Ann Tarini, ² Rosemary A Stamm, ⁶ and Kenneth H Brown ^{1,7}

- Wheat flour fortification –fortified @ 45 mg Fe/kg, 71.25 mg Zn, 3.75 mg folic acid, and 0.03 mg vitamin B-12.
- Design: 2009 and 2012 in 30 clusters with target samples from 10 HHs -15-40 y women (n=300, wheat flour 96 g/d) and 10 1-5 y children (n=330, 77g/d).

India: Double Fortified Salt (Iron + Iodine)

EFFICACY TRIALS

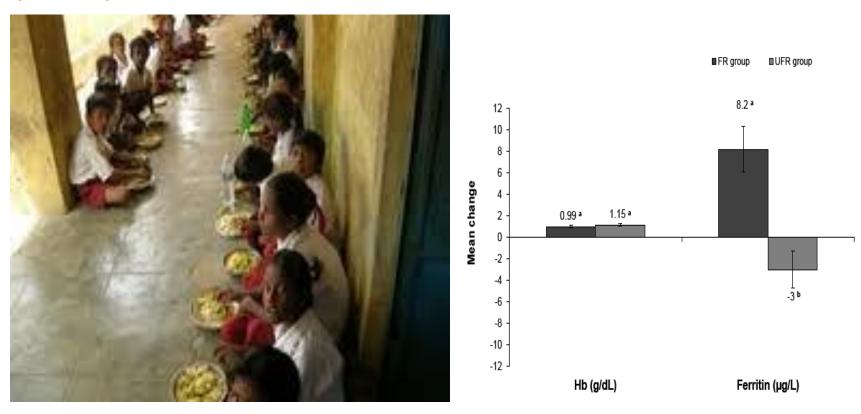
Double blind RCTs-2 (1990-02 & 1996-1998)

Ingredients	Quantity
Common Salt (g)	1000
FeSO ₄ 7H ₂ O (g)	5 (Fe 1 mg/g)
KI/KIO ₃ (mg)	52 (40 μg/g)
SHMP (g)	10 (10 mg/g)

Nair KM et al. Indian J Med Res, 108: 203-211.1998; Sivakumar et al Brit. J. Nutr.85: S167-S173. 2001; Sivakumar et al Indian J Pediatrics 69: 617-623, 2002

Efficacy of iron and other micronutrient fortification

Triple fortification: Micro-encapsulated iodine, iron and vitaminA


Zimmermann etal Am J Clin Nutr 80:1283-90, 2004.

Multiple micronutreint: Fe, I, Ca, Vitamins A, B1, B2, B12, B6, Folic acid,

Vinodkumar & Rajagopalan, Eur. J Clin Nutr, 63:437-445, 2009Sundar Serendipity Foundation, Chennai

Micronized ferric pyrophosphate supplied through extruded rice kernels improves body iron stores in children: a double-blind, randomized, placebo-controlled midday meal feeding trial in Indian schoolchildren The American Journal of Clinical Nutrition 2011;94:1202-10.

Madhari S Radhika, Krishnapillai M Nair, Rachakulla Hari Kumar, Mendu Vishnuvardhana Rao, Punjal Ravinder, Chitty Gal Reddy, and Ginnela NV Brahmam

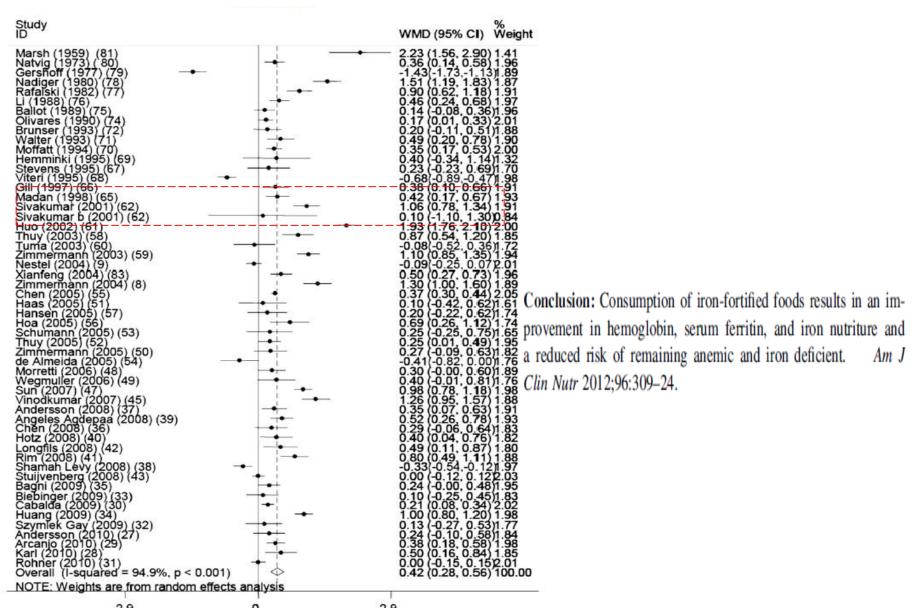
Introduced in 2 states as part of Mid-day meal programme

Iron fortified rice

Design MDM	Duration		Impact			
			Change in prevalenc e	Hemoglobin g/dl	Ferriti n µg/L	
RCT,	7 months	Extruded rice	Control	-0.6	+2.3	
Bangalore School lunch Iron depleted children N= 184		fortified with Micronized ferric pyrophosphat e / 20 mg	Fortified	- 0.2	+9.5	

What works? Interventions for maternal and child undernutrition and survival

Bhutta et al; Lancet 2008, DOI:10.1016/S0140-6736(07)61693-6


Food fortification

	Prenatal and antenatal*	Neonates (0-1 month)†	Infants (1-12 months)	Children (12-59 months)
Food fortification strategies and programmes (including iodised salt, iodisation of water, and fortification with iron and vitamin A)	Improved micronutrient status (haemoglobin concentration weighted mean difference in women of child bearing age 5-70 g/L, 95% Cl 0-02-11-38). In pregnant women, 6-90 g/L higher compared with no fortification (WMD 6-90, 2-74-11-06). Programmes for universal iodisation of salt decreased goitre prevalence by 19-64%. Rate of goitre reduced by 51-89% by iodisation of water	Neonatal mortality reduced by 65-7% after iodisation of water	Improved micronutrient status (haemoglobin concentration WMD 7-36 g/L, 2-88-11-84). Infant mortality decreased 56-5% after iodisation of water	Improved micronutrient status (haemoglobin WMD 7-36 g/L, 2-88–11-84). After 24 months of age, use of fortified foods including milk has improved micronutrient status (WMD 10-33 from a meta-analysis of studies). Additional reduction in diarrhoea morbidity noted in one study. Fortified milk reduced odds for days with severe illnesses by 15% (5–24%), the incidence of diarrhoea by 18% (7–27%), and the incidence of acute lower respiratory illness by 26% (3–43%)

Hb: Weighted mean difference in women =5.7 g/L Pregnant women =6.9 g/L Infants and children=7.36g/L

Effect of iron-fortified foods on hematologic and biological outcomes: systematic review of randomized controlled trials 1-4 Am J Clin Nutr 2012;96:309-24.

Tarun Gera, Harshpal Singh Sachdev, and Erick Boy

Review Article

Impact of iron-fortified foods on Hb concentration in children (<10 years): a systematic review and meta-analysis of randomized controlled trials

Ramesh Athe¹, M Vishnu Vardhana Rao¹,* and K Madhavan Nair²

¹Division of Biostatistics, National Institute of Nutrition, Indian Council of Medical Research, Jamai-Osmania, Hyderabad – 500007, Andra Pradesh, India: ²Division of Micronutrient Research, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India

Effect of iron-fortified foods on Hb in children

583

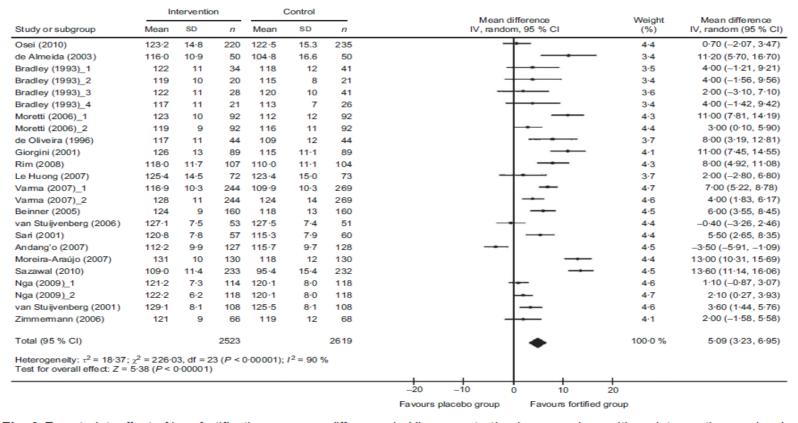
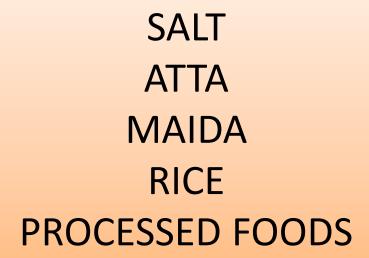



Fig. 2 Forest plot: effect of iron fortification on mean difference in Hb concentration in comparison with no intervention or placebo control in children (<10 years). Random-effects meta-analysis of weighted mean difference (WMD; and 95% CI) on Hb concentration with iron-fortified food intervention compared with control group. The sizes of data markers indicate the weight of each study in the analysis. Horizontal lines represent 95% CI. Blob indicates best estimate and diamond indicates the summary estimate of the WMD

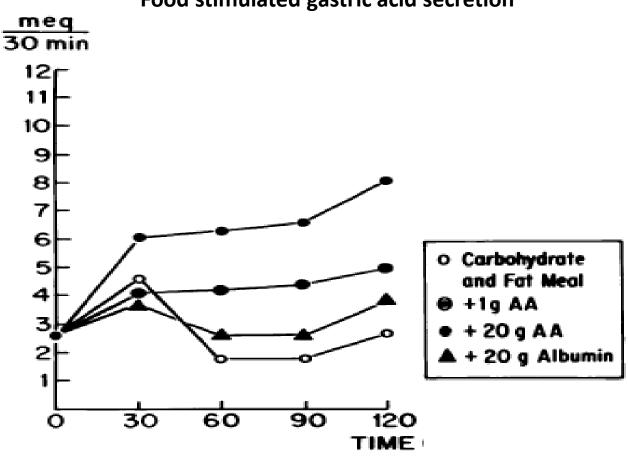
DIFFERENT IRON SOURCES

FOOD SAFETY AND STANDARDS (FORTIFICATION OF FOODS) REGULATION 2016

S.No.	Nutrient	Minimum Level of Fortification per Kg
1.	Iron- Sodium Iron (III) Ethylene diamine tetra Acetate, Trihydrate (Sodium federate-Na Fe EDTA);	20 mg
2.	Folic acid	1300 μg
3.	VitaminB12-cyanocobalamine, hydroxycobalamine;	10 μg

Ascorbic acid chelates in iron absorption: a role for HCl and bile

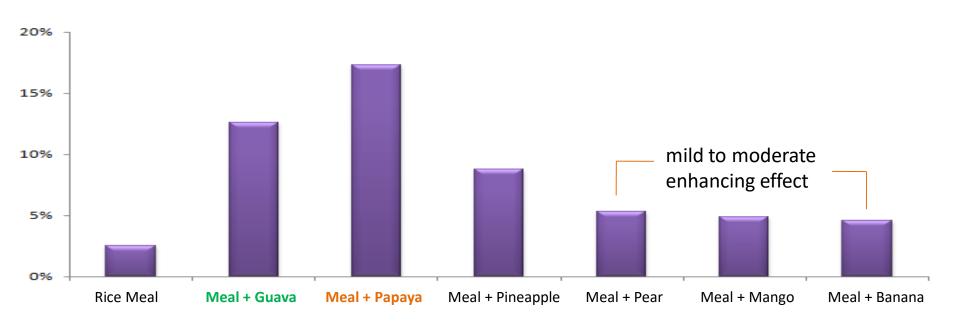
The chemical reaction of FeCl₃ and ascorbic acid must be initiated at an acid pH to ensure solubility of iron at pH of the duodenum


(FeCl₃+ascorbic acid) + base → soluble iron chelate

 $(FeCl_3+base) + ascorbic acid \longrightarrow insoluble iron precipitate.$

Conrad ME. & Schade SG.. Gastroenterology 55: 35–45, 1968.

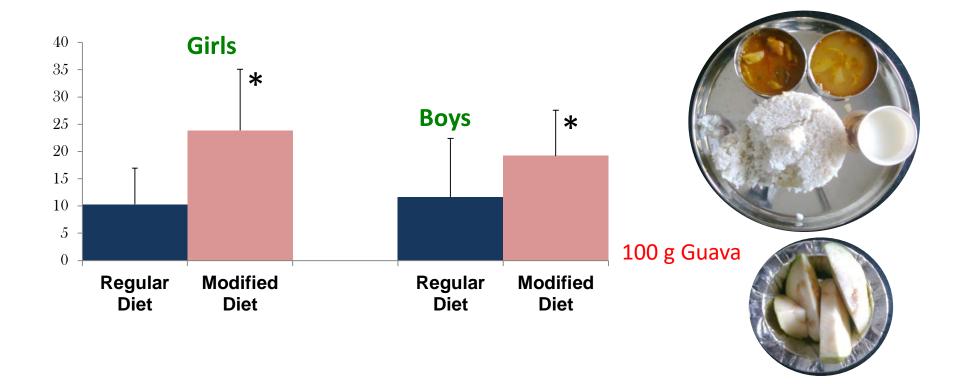
Bioavailability of dietary iron depends



The Journal of Clinical Investigation Volume 58 September 1976 · 623-631

Effect of Different Fruits on Iron Absorption:

Absorption of iron from a rice meal 22–74y aged Durban-Indian women (N= 234)


Close correlation between Fe absorption and the ascorbic acid content of the fruits (r = 0.738, P < 0.0001).

Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents 1,2

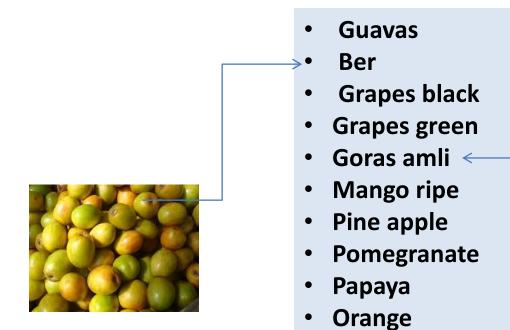
Krishnapillai Madhavan Nair, * Ginnela N.V. Brahmam, * Madhari S. Radhika, * Roy Choudhury Dripta, * Punjal Ravinder, * Nagalla Balakrishna, * Zhensheng Chen, * Keli M. Hawthorne, * and Steven A. Abrams*

Haemoglobin repletion in anaemic adolescent girls

The intervention group received 100 g guava fruit with the lunch and dinner meals

Intervention Group: Baseline 10.7g/dLto end line 12.9g/dL 1.9 g/dl

Control group: Baseline 11.0 to end line 11.3 g/dL.



Food based approaches to increase iron bioavailability

Sapota

Micronutrient sachet

Home or point of use/care fortification

 They provide easy-to use, practical solutions to mothers and caregivers who are interested in improving the vitamin and mineral health of their children.

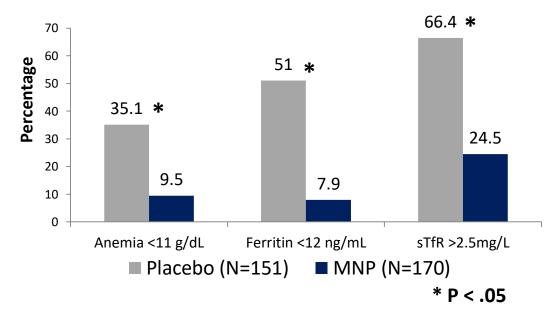
Acceptability high (Hanumante, 2008)

 Effective in reducing ID (Hanumante, 2008; Hirve, 2007.

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

Issue: Integrating Nutrition and Early Childhood Development Interventions

Integrating nutrition and early child-development interventions among infants and preschoolers in rural India


Sylvia Fernandez-Rao,¹ Kristen M. Hurley,^{2,3} Krishnapillai Madhavan Nair,⁴ Nagalla Balakrishna,⁵ Kankipati V. Radhakrishna,⁶ Punjal Ravinder,⁴ Nicholas Tilton,⁴ Kimberly B. Harding,⁷ Greg A. Reinhart,⁸ and Maureen M. Black²

¹Department of Behavioural Sciences, National Institute of Nutrition, Hyderabad, India. ²Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. ³Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland. ⁴Department of Micronutrient Research, National Institute of Nutrition, Hyderabad, India. ⁵Department of Biostatistics, National Institute of Nutrition, Hyderabad, India. ⁶The Micronutrient Initiative, Ottawa, Canada. ⁸The Mathile Institute for the Advancement of Human Nutrition, Dayton, Ohio

Composition of product 'Grow-smart'

	Grow Smart 3 (36+ months of age)	Placebo (all age groups)
Iron (encapsulated ferrous fumarate), mg	13	0
Vitamin A (retinyl palmitate), µg	150	0
Vitamin C (ascorbic acid), mg	20	0
Folic acid, µg	20	0
Zinc (zinc gluconate), mg	5	0
Vitamin B ₁₂ (cobalamin), μg	0.5	0
Vitamin B ₂ (riboflavin), mg	0.5	0.5
Maltodextrin	Filler	

Other micronutrients did not change significantly

Biofortification

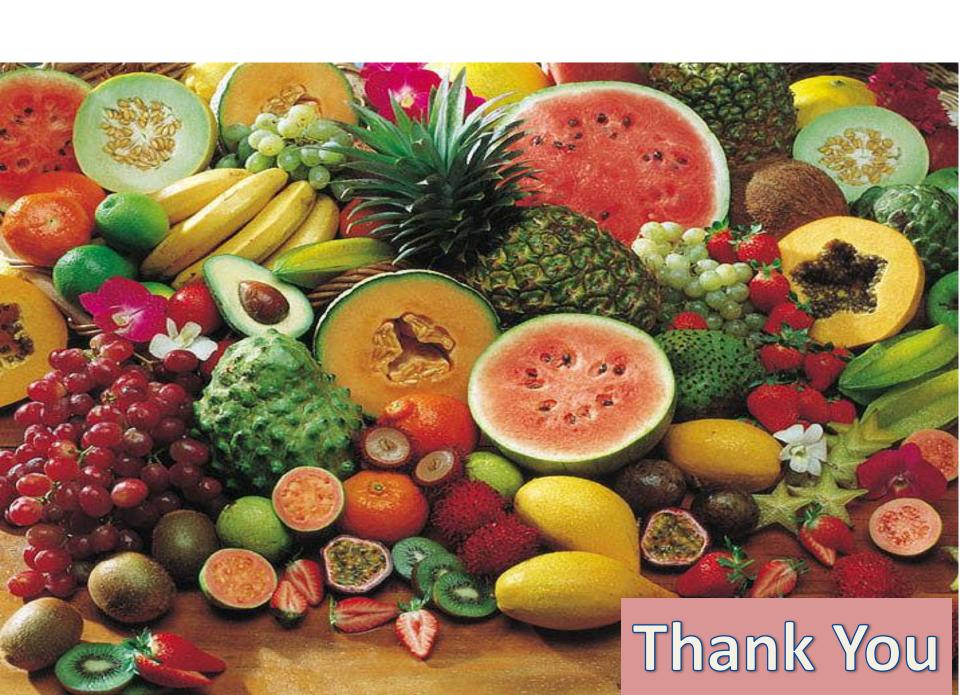
- Intervention strategy that makes the plants do the work of fortification
- Traditional plant breeding. Selection and breeding of high iron/ascorbic acid/low phytate varieties of major staple food crops with superior agronomic properties

Table 3. Number of households reached in target countries 2012–2015 (x 1000)

Country-crop	2012	2013	2014	2015
Iron bean–Rwanda	105	609	332	453
Iron bean-DR Congo	60	241	128	175
Iron bean–Uganda	29	69	43	39
Iron pearl millet–India	30	40	62	125
Provitamin A maize–Zambia	0	11	104	126
Provitamin A cassava-Nigeria	0	106	360	528
Provitamin A cassava–DR Congo	0	25	75	127
Provitamin A orange sweet potato–Uganda	33	76	107	132
Zinc wheat–India	0	1	6	36
Zinc wheat-Pakistan	0	0	0	3
Zinc rice-Bangladesh	0	1	18	160
Total	257	1179	1235	1865

Ann. N.Y. Acad. Sci. 1390 (2017) 104-114 © 2017 New York Academy of Sciences

Conclusions



Bio Fortified staple foods

Health Care facility & WASH

- Multiple channels of evidence based food fortification strategies are available
- Include fortified foods in the existing national programmes DFS, wheat flour and rice
- Popularize –Food synergy /simple dietary diversification to enhances iron bioavailability
- Constantly monitor both functional benefits and biochemical effects

